A spatial bioeconomic model for MPA network design

Oceanography Workshop
September 16, 2008 • El Segundo, CA
Chris Costello
University of California, Santa Barbara

Why models help inform good decisions

- MLPA modeling team: What are ecological and economic consequences of a given MPA network?

- Bioeconomic model being developed and tuned to So Cal data to predict spatial effects of MPA networks
 - Economic and ecological criteria for a range of target species/fleets

- Larval dispersal is a critical component of model
 - How are patches “connected” across space?
 - Do connections differ among species?
 - What is temporal variability of connections?
 - Do larvae exhibit behavior or are they passive?
Model inputs/outputs

- **Inputs**: Current MPAs, Spatially-explicit habitat data, MPA locations, larval dispersal kernels, adult home range, dynamic biomass model, fleet model of fishing effort

- **Outputs**: Spatial larval supply, biomass, fishing effort, harvest, profit...all for 6 or 7 “model” species

Southern CA parameterization

- Currently parameterizing: urchin, abalone, kelp bass, lingcod, cabezon, blue rockfish
 - Will likely add 3-4 to this list

- Patches roughly 1km x 1km in size
Timing

- Adult population in a location
 - Settlement and survival to adulthood
 - Larval production
 - Dispersal D_{ij}
- Spawning population (Escapement)
- Fleet Model: Harvest

(Note here that harvest is location-specific)

An application to California’s South-Central Coast

- Initial test species: kelp bass
- Adults relatively sedentary
- Larval dispersal via ocean currents
 - PLD=26-36 days
 - Oceanographic model of currents
- Settlement success and recruitment
 - Beverton Holt, associated with kelp abundance in patch
- Constant price per unit harvest, stock-effect on harvest cost function
Heterogeneous Productivity & Larval Survival

Un-harvested biomass by patch

Problem setup

- Maximize $E\{NPV\}$ of profits from harvest.
- Find optimal patch-specific harvest strategy:
- Equation of motion:
 \[X_{i,t+1} = z_{it} \mu_t(e_{it}) + z_{it}^2 \sigma_t \left(\sum_{j=1}^{I} z_{jt}^f f_j(e_{jt}) D_{jt} \right) \]
- Dynamic Programming Equation (vector notation):
 \[V_t(x_i) = \max_{e_i} \sum_{i=1}^{I} \pi_t(x_{it}, e_{it}) + \delta EV_{t+1}(X_{t+1}) \]
Spatial implications for conservation

- Complex interactions:
 - MPA size and placement interacts with habitat, dispersal, home ranges, fisheries behavior to create complex spatial consequences.

- Use spatially-explicit models to predict:
 - Biomass of different species across space
 - Yield, Effort and Profit across space
 - Change from status quo

- Used EDOM model to predict biomass across space
- Notice large biomass increases inside MPAs
- Generates predictions for monitoring
Models for real-time design

- Use as interactive “design tool”
 - Delineate MPA network on a map
 - Run model (takes < 1 minute)
 - Assess conservation and economic impacts (cumulative or spatial, dynamic or equilibrium)

- Value of individual MPAs
 - Ecological and Economic performance measures
 - Depends on whole network
 - System-wide performance with/without an MPA

- Generates predictions to guide monitoring
- Comparison across MPA network proposals

2-D dispersal from oceanographic model
"Patchy" dispersal vs. diffusion

This relationship is highly variable – not a smooth dispersal kernel. Dispersal kernel is proportion of larvae that go from source to dest.

Temporal variability in dispersal

- Dispersal kernel is species-specific matrix of connections between source and destinations.
- Estimated dispersal kernels are "mean"; what about temporal variability?
- Suppose dispersal kernel K_j has probability of occurrence p_j.
- Can use to derive distribution over effects of an MPA network – which networks perform well under a range of conditions?
- Dynamic