Equilibrium Delay-Difference Optimization Model

Designing, evaluating, and comparing proposals under the MLPA

Carl Walters Ray Hilborn Christopher Costello

MLPA – SAT Meeting January 8, 2008

MLPA SAT January 8 meeting

Objectives

- How will we know if a given MPA network achieves goals of MLPA?
- Would also like to know (a) extent to which goals are being achieved and possibly (b) indirect consequences of a network.
- MLPA process requires a "model" use best available science to:
 - Inform MPA network design
 - Evaluate and help improve on stakeholder proposals
 - Inform tradeoffs inherent in a given MPA proposal
 - Inform monitoring

MLPA SAT January 8 meeting

What would be useful?

- For any given MPA network proposal:
 - Spatial distribution of stocks, many species/life-history traits
 - Coast-wide larval connectivity
 - Spatial distribution of commercial and recreational effort, harvest, and economic returns before & after reserves
- This tool could be useful:
 - Take input from stakeholders (e.g. high value from keeping a patch open) seed "good" reserve networks as a starting point
 - Evaluate the spatial biological and economic impacts of given proposal
 - Compare across proposals
 - Illuminate obviously inferior proposals

MLPA SAT January 8 meeting

3

Absent modeling predictions...

- "Model" would make biological and economic predictions across space.
- Without a "model" we could use <u>habitat as proxy for biology</u> and <u>current effort/harvest as proxy for economics</u>.
 - Problem is that these are dynamically and spatially connected they respond in complicated ways to closures
 - Larvae and adults disperse
 - Fish population dynamics in response to closures
 - Fishermen move in response to closures
- These are poor proxies for assessing ultimate consequences of reserves.

MLPA SAT January 8 meeting

Equilibrium Delay-Difference Optimization Model

- We seek to develop a model to achieve the aforementioned objectives
- Based on state-of-the-art spatial and dynamic biology and economics
- Rest of this talk
 - 1. Model basics and outputs
 - 2. Model inputs and other considerations
 - 3. Use EDOM to compare MLPA proposals
 - 4. Demonstrate graphical user interface

MLPA SAT January 8 meeting

5

Model Basics

- Spatially explicit biological model species are harvested, grow, disperse, etc.
- "Equilibrium" model
- Multiple non-interacting species are harvested simultaneously
- Reads in spatial data on habitat, dispersal, home ranges, biological parameters for species of interest, economics of fleet.
- <u>Harvest outside</u>: (1) constant fishing pressure everywhere, (2) fleet movement depending on harvest density, (3) bionomic equilibrium (rent dissipation), and (4) optimal spatial harvest
- Output: (1) spatial biomass, effort, harvest, economic returns for all species under consideration, (2) Larval connectivity, (3)
 Economic impacts by port separately for recreational and commercial fleets

MLPA SAT January 8 meeting

Scientific Considerations

- Age structure Fully accounted for (Deriso-Schnute delay difference model)
- <u>Larval dispersal</u> without oceanographic model, we use normal distribution
- Adult dispersal Home range, radius from literature
- Habitat Beverton-Hold recruitment is habitat (therefore spatially) explicit, different for each species
- <u>Post recruitment survival</u> Ford Brody growth, age independent survival, egg production proportional to fish weight (for older fish)
- <u>Multi-species</u> species coexisting in a patch are harvested simultaneously without selection, no interspecies population dynamics
- Recreational and Commercial fleets considered, vulnerability of each species differs across sectors
- <u>Fishing costs and revenue</u> constant price per kg, constant cost per unit of effort (though different across recreational and commercial)
- Harvest rate outside reserves critically drives impacts of reserves on biology and economics
 - Constant fishing mortality rate
 - 2. Fleet model fishermen search for good fishing locations
 - 3. Bionomic equilibrium fish down patches until revenue equals cost
 - Optimized spatial harvest each patch harvested differently to maximize economic value of fishery

MLPA SAT January 8 meeting

7

EDOM User Interface

- I'll show the user interface & 3 kinds of uses:
- 1. The basic inputs, outputs, and features
- 2. Evaluating and improving a given reserve network proposal
- 3. Comparing a suite of reserve network proposals.

Edom.exe

MLPA SAT January 8 meeting