Science Guidelines and Evaluation Methods
North Central Coast Study Region

Presentation to the
MLPA Blue Ribbon Task Force and the California Fish and Game Commission
February 13, 2008 • Pacifica, CA
Prepared by Dr. Steven Gaines
MLPA goals
Science guidelines for MPA design
Evaluation Methods
MLPA Goals

1. To protect the natural diversity and function of marine ecosystems.

2. To help sustain and restore marine life populations.

3. To improve recreational, educational, and study opportunities in areas with minimal human disturbance.

4. To protect representative and unique marine life habitats.

5. Clear objectives, effective management, adequate enforcement, sound science.

6. To ensure that MPAs are designed and managed as a network.
MLPA Goals: Habitats

1. To protect the natural diversity and function of marine ecosystems.
2. To help sustain and restore marine life populations.
3. To improve recreational, educational, and study opportunities in areas with minimal human disturbance.
4. To protect representative and unique marine life habitats.
5. Clear objectives, effective management, adequate enforcement, sound science.
6. To ensure that MPAs are designed and managed as a network.
SAT Guidelines: Goals 1 and 4

MLPA Goals:
1) *Protect natural diversity and function of marine ecosystems*
4) *Protect representative and unique marine life habitats*

SAT Approach

- Refined key habitats for NCCSR
- Defined biogeographic subregions
- Refined and described level of protection designations
- Evaluated habitat representation in MPAs
SAT Guidelines: Goals 1 and 4

Identified Key Habitats Using:
 • Bottom Type and Depth Categories
 • Biogenic Habitats
 • Oceanographic Features
<table>
<thead>
<tr>
<th>Seafloor Habitats</th>
<th>Depth Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Rocky reefs</td>
<td>• Intertidal</td>
</tr>
<tr>
<td>• Intertidal zones</td>
<td>• Intertidal to 30 m</td>
</tr>
<tr>
<td>• Sandy or soft ocean bottoms</td>
<td>• 30 to 100 m</td>
</tr>
<tr>
<td>• Underwater pinnacles</td>
<td>• 100 to 200 m</td>
</tr>
<tr>
<td>• Submarine canyons</td>
<td>• 200 m and deeper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biogenic Habitats</th>
<th>Oceanographic Habitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kelp forests</td>
<td>• Upwelling areas</td>
</tr>
<tr>
<td>• Seagrass beds</td>
<td>• Freshwater plumes</td>
</tr>
</tbody>
</table>

SAT Guidelines: Goals 1 and 4
SAT Guidelines: Goals 1 and 4

Used GIS to Locate Habitats

- Identified geographic distribution
- Estimated area of each habitat type for study area and subregions
- Estimated area or linear extent of habitat in each MPA
Three subregions

- North (Pt. Reyes – Pt Arena)
- South (Pigeon Pt. to Pt. Reyes)
- Farallon Islands

Based upon

- Species and community distributions
- Geomorphology
- Oceanography
SAT Guidelines: Levels of Protection

Designated levels of protection based on potential impacts of proposed activities

- **direct impacts**
 - habitat damage
 - incidental removal or mortality of non-target species

- **indirect impacts**
 - potential ecosystem effects caused by removing target or associated catch species
The Question:

“Would there be a difference between ecosystems within an MPA that prohibits take of this species versus an area outside of the MPA where take is allowed?”

Yes if:
- habitat is damaged
- many species are removed
- removed species play an important role in the resident ecosystem (predator, prey, competitor etc.)

No if:
- no habitat damage
- little associated catch
- species removed are highly mobile so MPAs won’t change local abundance
<table>
<thead>
<tr>
<th>Level of Protection</th>
<th>MPA Types</th>
<th>Activities associated with this protection level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very high</td>
<td>SMR</td>
<td>No take</td>
</tr>
<tr>
<td>High</td>
<td>SMCA</td>
<td>salmon (troll H&L in water greater than 50m depth), sardine, anchovy, and herring (pelagic seine)</td>
</tr>
<tr>
<td>Mod-high</td>
<td>SMCA</td>
<td>salmon (troll H&L in water less than 50m depth)*, Dungeness crab (traps/pots), squid (pelagic seine)</td>
</tr>
<tr>
<td>Moderate</td>
<td>SMCA SMP</td>
<td>salmon (non-troll H&L), abalone (diving), halibut, white seabass, striped bass, shore-based finfish and flatfishes (H&L), clams (hand harvest), giant kelp (hand harvest)</td>
</tr>
<tr>
<td>Low-mod</td>
<td>SMCA SMP</td>
<td>Urchin (diving), lingcod, cabezon, greenling, rockfish, and other reef fish (H&L), surfperches (H&L)</td>
</tr>
<tr>
<td>Low</td>
<td>SMCA SMP</td>
<td>bull kelp and mussels (any method), all trawling, giant kelp (mechanical harvest)</td>
</tr>
</tbody>
</table>

* Note SAT (1/23/08) assigned this activity a “high/mod-high” LOP
Key Questions for Each Proposed Package

1. How well are key habitat types represented in proposed MPA packages?

2. What are the proposed levels of protection for these habitat types?

3. How well are habitats and levels of protection distributed across the study region?
Example of how habitat representation is evaluated and presented to stakeholders.

For some habitats, there are strong differences between proposals in the amount of habitat represented in MPAs and the levels of protection.
How Much Habitat is Needed?

For a habitat to count in an MPA

- Should be sufficient to encompass most of the species that live in the habitat
- Survey data shows how more area captures more species
- SAT determined that area should be sufficient to capture 90% of biodiversity
How much Habitat is needed?

The amount needed varies by habitat.

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Representation needed to encompass 90% of biodiversity</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocky Intertidal</td>
<td>~0.6 linear miles</td>
<td>PISCO Biodiversity</td>
</tr>
<tr>
<td>Shallow Rocky Reefs/Kelp Forests (0-30 M)</td>
<td>~1.1 linear miles</td>
<td>PISCO Subtidal</td>
</tr>
<tr>
<td>Deep Rocky Reefs (30-100 M)</td>
<td>~0.2 square miles</td>
<td>Starr surveys</td>
</tr>
<tr>
<td>Sandy Habitat (30-100 M)</td>
<td>~10 square miles</td>
<td>NMFS triennial trawl surveys 1977-2007</td>
</tr>
<tr>
<td>Sandy Habitat (0-30 M)</td>
<td>~1.1 linear miles</td>
<td>Based on shallow rocky reefs</td>
</tr>
<tr>
<td>Sandy Beaches</td>
<td>~ 1 linear mile</td>
<td></td>
</tr>
</tbody>
</table>
MLPA Goals: Populations

1. To protect the natural diversity and function of marine ecosystems.
2. To help sustain and restore marine life populations.
3. To improve recreational, educational, and study opportunities in areas with minimal human disturbance.
4. To protect representative and unique marine life habitats.
5. Clear objectives, effective management, adequate enforcement, sound science.
6. To ensure that MPAs are designed and managed as a network.
Size Guideline #1: “For an objective of protecting adult populations, based on adult neighborhood sizes and movement patterns, MPAs should have an alongshore span of 5-10 km (3-6 mi) of coastline, and preferably 10-20 km (6-12.5 mi). Larger MPAs would be required to fully protect marine birds, mammals, and migratory fish.

Minimum size = 9 square miles

Size Guideline #2: “For an objective of protecting the diversity of species that live at different depths and to accommodate the movement of individuals to and from shallow nursery or spawning grounds to adult habitats offshore, MPAs should extend from the intertidal zone to deep waters offshore.”

Preferable size = 18 - 38 square miles
SAT Guidelines: Goals 2 and 6

<table>
<thead>
<tr>
<th>Distance (km)</th>
<th>Invertebrates</th>
<th>Rockfishes</th>
<th>Other Fishes</th>
<th>Mammals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 1 km</td>
<td>abalone, mussel, octopus, sea star, snail, urchin</td>
<td>black, China, greenspotted, olive, yelloweye</td>
<td>walleye perch*</td>
<td></td>
</tr>
<tr>
<td>1 – 10 km</td>
<td>Dung. crab**</td>
<td>blue, bocaccio, yellowtail</td>
<td>anchovy, Ca. halibut, herring, lingcod, sardine, starry flounder</td>
<td></td>
</tr>
<tr>
<td>10 – 100 km</td>
<td>Rockfishes</td>
<td>Other Fishes</td>
<td>Birds</td>
<td></td>
</tr>
<tr>
<td>100 – 1000 km</td>
<td>Rockfishes</td>
<td>canary</td>
<td>Fishes</td>
<td></td>
</tr>
<tr>
<td>> 1000 km</td>
<td>Other Fishes</td>
<td>big skate</td>
<td>Turtles**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mammals</td>
<td>Pacific halibut</td>
<td>Birds</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sablefish**</td>
<td>porpoises</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>salmonids**</td>
<td>sea lions**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sole spp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sturgeon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>whiting**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>gulls**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mammals</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dolphins</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sea lions**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>whales**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Studies of this species included fewer than 10 individuals
** Seasonal Migration
Size Analysis Methods

- Measure individual MPA lengths and area
- Combine contiguous MPAs into single MPA complexes
- Consider level of protection
- Tabulate MPA lengths and areas relative to minimum & preferred guidelines
Evaluation: Size

Cluster Size at High Protection
Spacing Guideline: “For an objective of facilitating dispersal of important bottom-dwelling fish and invertebrate groups among MPAs, based on currently known scales of larval dispersal, MPAs should be placed within 50-100 km (31-62 m or 27-54 nm) of each other.”
Size and spacing are interrelated.

Size:
- 5-10 km, minimum
- 10-20 km, preferred
- Intertidal to deep waters

Spacing:
- 50 – 100 km apart

Data from Kinlan and Gaines 2003, PISCO 2007
Spacing Analysis Methods

- Characterize each MPA by the habitats included
- For each habitat, measure the gaps between adjacent, high protection MPAs
Evaluation: Spacing

Maximum Gaps at High Protection

![Graph showing maximum gaps at high protection for different environments such as Sandy Beach, Surfgrass/Eelgrass, Sand: 30 - 100m, Rock: 30 - 100, Rocky Intertidal, Sand: 0 - 30m, and Rock: 0 - 30. The graph compares these environments across different miles (1, 2, 3, 4, XA, 0).]
“Key’ marine habitats should be replicated in multiple MPAs across large environmental and geographic gradients to protect the greater diversity of species and communities that occur across such gradients, and to protect species from local year-to-year fluctuations in larval production and recruitment.”

“For an objective of providing analytical power for management comparisons and to buffer against catastrophic loss of an MPA, at least three to five replicate MPAs should be designed for each habitat type within a biogeographical region.”
To count as a replicate, the MPA must

1. Meet the desired level of protection

2. Meet size guidelines (9 sq mi) – estuarine MPAs are the exception to this rule

3. Contain enough of the habitat to encompass 90% of biodiversity

Note: The biogeographic region is Oregon to Point Conception
Evaluation: Habitat Replication

Replication at High Protection

- Sandy or gravel Beaches
- Rocky intertidal and cliff
- Surfgrass
- soft 0 - 30m
- soft 30 - 100m
- hard 0 - 30m
- hard 30 - 100m
- Average Kelp
- CCSR MPAs

Number of Replicates

- Prop 0
- 1 (EC)
- 2 (JD)
- 3 (TC)
- 4 (JC)
- XA
Evaluation: Replication

Replication can inform adaptive management

- Comparing a marine reserve (no take) to an MPA that allows one activity can provide insights about the impact of that activity on marine ecosystems.

- For study purposes, the MPAs should be located in similar habitats and in the same subregion.

- Multiple points of comparison (replicates) increases analytical power.
Evaluation: Birds and Mammals

Consider:

Breeding Colonies/Rookeries
Abundance and percentage of subregional populations within proposed MPAs

Haul-outs/Roosts
Number of major roosts/haul outs within proposed MPAs

Foraging areas
Focus on species with limited foraging ranges. Considered overlap of draft proposal with foraging areas near colonies (near = 3 mi alongshore x 1 mi offshore)
Weighted analysis based on colony size and foraging area of overlap within proposed MPAs.
Size and spacing guidelines come from simple models informed by data.
Habitats are patchy.

Packages do not have MPAs of uniform size and spacing.

Costs depend on how marine species and humans respond.
Different Species, Different Views

- Habitats are patchy
- Packages do not have MPAs of uniform size and spacing
- Costs depend on how marine species and humans respond
SAT Parallel Approaches Group

- Two new complementary modeling efforts
 - UC Davis
 - EDOM

- Model package impacts on abundance/sustainability and yield

- Multiple species
New Model Insights

- Estimate costs and benefits of packages
- Combine impacts of size and spacing
- Evaluate consequences of different human actions outside MPAs
Conclusions

- MLPA goals and MPF guidelines remain the same across study regions.

- Evaluations are tailored to the specific study region (e.g., some habitats not present, presence of offshore islands).

- The NCC SAT has refined evaluation methods with additional science:
 - levels of protection
 - minimum habitat to count
 - evaluation of birds and mammals
 - new ways to present evaluations
 - new insights from models